Extension of a list coloring problem
نویسندگان
چکیده
For a graph H , f (H ) is the smallest integer k such that the join of H with an empty graph Ek of order k is not |V (H )|-choosable. It was conjectured that for a triangle-free graph G, f (G) = ( 2 )μ(G) nn−2μ(G), where n = |V (G)| and μ(G) is the cardinality of a maximum matching of graph G [S. Gravier, F. Maffray, B. Mohar, On a list-coloring problem, Discrete Math. 268 (2003) 303–308]. We verify this conjecture in the case of forests, and propose some related problems. © 2005 Published by Elsevier Ltd
منابع مشابه
Closing Complexity Gaps for Coloring Problems on H-Free Graphs
If a graph G contains no subgraph isomorphic to some graph H, then G is called H-free. A coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that no two adjacent vertices have the same color, i.e., c(u) 6= c(v) if uv ∈ E; if |c(V )| ≤ k then c is a k-coloring. The Coloring problem is to test whether a graph has a coloring with at most k colors for some integer k. The Precolori...
متن کاملExploring the complexity boundary between coloring and list-coloring
Many classes of graphs where the vertex coloring problem is polynomially solvable are known, the most prominent being the class of perfect graphs. However, the list-coloring problem is NP-complete for many subclasses of perfect graphs. In this work we explore the complexity boundary between vertex coloring and list-coloring on such subclasses of perfect graphs, where the former admits polynomia...
متن کاملGraph Coloring Problems and Their Applications in Scheduling
Graph coloring and its generalizations are useful tools in modeling a wide variety of scheduling and assignment problems. In this paper we review several variants of graph coloring, such as precoloring extension, list coloring, multicoloring, minimum sum coloring, and discuss their applications in scheduling.
متن کاملOn coloring problems with local constraints
We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower a...
متن کاملNP-completeness of list coloring and precoloring extension on the edges of planar graphs
In the edge precoloring extension problem we are given a graph with some of the edges having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-edge-coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We s...
متن کاملHard coloring problems in low degree planar bipartite graphs
In this paper we prove that the PRECOLORING EXTENSION problem on graphs of maximum degree 3 is polynomially solvable, but even its restricted version with 3 colors is NP-complete on planar bipartite graphs of maximum degree 4. The restricted version of LIST COLORING, in which the union of all lists consists of 3 colors, is shown to be NP-complete on planar 3-regular bipartite graphs. © 2006 Els...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 19 شماره
صفحات -
تاریخ انتشار 2006